Long Term Distributed File Reference Tracing:
Implementation and Experience

L. Mummert and M. Satyanarayanan

November 1994
CMU-CS-94-213

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

Abstract

DFSTrace isa system to collect and analyze long-term file reference datain a distributed UNIX workstation environ-
ment. The design of DFSTraceisuniquein that it pays particular attention to efficiency, extensibility, and thelogistics
of long-term trace data collection in adistributed environment. The componentsof DFSTrace are a set of kernel hooks,
akernel buffer mechanism, a data extraction agent, a set of collection servers, and post-processing tools.

Our experience with DFSTrace has been highly positive. Tracing has been virtually unnoticeable, degrading perfor-
mance 3-7%, depending on thelevel of detail of tracing. We have collected fil e reference traces from approximately 30
workstations continuoudly for over two years. We have implemented a post-processing library to provide a convenient
programmer interface to the traces, and have created an on-line database of results from a suite of analysis programs
to aid trace selection.

Our data has been used for a wide variety of purposes, including file system studies, performance measurement and
tuning, and debugging. Extensions of DFSTrace have enabled its use in applications such as field reliability testing
and determining disk geometry. This paper presents the design, implementation, and evaluation of DFSTrace and
associated tools, and describes how they have been used.

This research has been supported by the National Science Foundation under Grant ECD-8907068, and the Air Force Materiel
Command (AFMC) and the Advanced Research Projects Agency (ARPA) under Contract F19628-93-C-0193. Support also came
from the Digital Equipment Corporation and the IBM Corporation. The U.S. government is authorized to reproduce and distribute
reprints for government purposes, notwithstanding any copyright notation thereon.

The views and conclusions contained in this document are those of the authors and should not be interpreted as necessarily
representing the official policies or endorsements, either expressed or implied, of the NSF, AFMC, ARPA, DEC, IBM, or theU. S.
Government.

Keywords: filereference tracing, distributed file systems, Coda file system, Andrew file system, file access patterns,
measurement, evaluation

1 Introduction

Empirical data from file systems has been used in many phases of the development of data storage systems. For
example, such data has been used to study file caching!: 2, placement3, and migration®> 6 7. In this paper, we
describe the design and implementation of a system called DFSTrace to collect long-term file reference data in a
distributed workstation environment. The challenges involved in collecting such data are in engineering rather than
concept. Hence this paper focuses on the design and implementation of DFSTrace rather than on the results of using
the traces.

The need for detailed file reference traces arose in 1989 during the development of the Coda file system® 9, an
experimental distributed file system that provides high availability. The trace data had to have severa properties that
distinguish our work from other file reference tracing efforts. First, the data had to be long-term — weeks or months.
Second, it had to contain information on a broad class of file system operations. Third, it had to be from a distributed
workstation environment. None of the existing sets of file reference datafrom UNIX* environmentsat thetimel® 112
satisfied al of these requirements. Even now, five years later, only our data meets these requirements.

DFSTrace meets these requirements. We have used this system to collect data continuously from approximately 30
workstations for over two years. We have obtained over 150 GB of data containing references to the Andrew File
System?? (AFS'), NFS!3, Coda, and the local UNIX file system'®. We have developed a versatile post-processing
library and tools to analyze the data, and an on-line database of results from a suite of analysis programs to aid in
selecting traces for study.

The rest of this paper is organized as follows. Section 2 describes the design of DFSTrace. The instrumentation and
collection machinery are described in Sections 3 and 4, respectively. The post-processing library, summary suite, and
on-line database are described in Section 5. In Sections6 and 7 we evaluate DFSTrace qualitatively and quantitatively.
Section 8 summarizes the ways in which researchers have used and extended DFSTrace. We close with a discussion
of related work and conclusions.

2 Design Rationale

In this section we describe how our data requirements influenced the design of DFSTrace. We then present the
architecture of the collection system, and discuss how it addresses the design requirements. Last, we describe the
format and content of the data collected by DFSTrace.

2.1 Requirements

Long term data collection imposes severa reguirements on a tracing system. The most important requirement is that
tracing must be unobtrusive, otherwise users may alter their behavior or refuse to be traced. This requirement is
critical in view of our desire for detailed traces, because clients are likely to generate a large amount of data. The
system must be efficient both in terms of client workstation performance and client resources used, and it should be
application-transparent (i.e., users should not have to run specia versions of their application software to generate
trace data). The desire for efficiency and application-transparency suggests data should be gathered in the operating
system kernel. Because the information needed to construct trace records resides in kernel data structures, gathering
data in the kernel minimizes crossings of the user-kernel boundary and is hence more efficient than gathering data at
user level. Again, to keep tracing overhead low, data should not be processed during collection. To minimize client
resource use, data should reside on the client only temporarily; it should then be shipped to a collection site in the
background.

Tracing a distributed workstation environment imposes the following additional system requirements. Distribution
introduces multiple points of failure. The system should be robust enough to detect and tolerate failures. Buffering
on the client can mask short failures, but may not suffice for prolonged outages. In thelong term, failuresresulting in
dataloss areinevitable. The system must be able to record the occurrence of datalosses so they may be detected later.

*UNIX isaregistered trademark of UNIX Systems Laboratories, Inc.
tAFSis aregistered trademark of the Transarc Corporation.

Client
Workstations

Collection
\ Servers

P>
&
O
@

tape

tape

O] LOf Y] LY

Thisfigure showsthe overall structure of DFSTrace. Each client runs an agent daemon (A), which extractstrace
data from the kernel and shipsit to a collection site. Each collection site runs a collector (C), which receives
the data and buffersit in disk files. An optional tape daemon (T) writes these filesto tape in the background.

Figure 1: Top-level view of DFSTrace

Distributed environments are often heterogeneous, and the architectures used tend to change over time. Therefore the
system should be reasonably portable to new architectures. In along-term collection effort, changes are inevitablein
the data being collected as well as in the system collecting it. The system must be flexible enough to detect and cope
with such changes gracefully. A versioning scheme should be used that allows components of the system to be treated
as interchangeable. This implies that the collection mechanism should not depend on the content of the data being
collected. Finaly, the system should be easy to administer. The logistics of gathering the data should be automated
wherever possible.

2.2 Architecture

Figure 1 presents ahigh-level view of DFSTrace, excluding post-processing software. Trace dataisgenerated by client
workstations running kernels instrumented at the system call level. The data is extracted by a user-level process, or
agent, buffered locally in memory, and then sent to one of a small number of data collection servers, or collectors.
A collector buffers the data on disk; in the background an optional tape daemon moves the data to tape. The datais
post-processed later to obtain a usable set of traces for analysis. Multiple servers may be used to baance load and
maintain availability.

The agent and collector do not interpret the data, thus their operation is independent from the data being collected.
The kerndl, agent, and collector may be changed independently. The agent and collector employ version information
in their communication interface to alow incompatible releases of code to be detected at runtime. If an agent is
incompatible with the collector, the agent exitswith an advisory message.

More detail on client operation is provided in Figure 2. We have instrumented system call code to gather data on file
system activity. Relevant datais passed to alogging routine which packs a trace record and writesit into an circular
memory buffer. The agent extracts blocks of datafrom the buffer through a simple device driver interface. The agent
buffers datain memory rather than in files to minimize itsimpact on the data being collected.

2.3 Data Format and Content

The performance of client workstationsis affected directly by the amount of datathey generate. We wanted to collect
detailed data on file system operationswithin the limit of reasonable client performance. Needlessto say, it took afew
iterations before the data generated was complete, and struck a good balance between detail and performance. In this

System call code
trace data \

Logging code

logging buffer

Kernel

get .
data ;
: data
agent
User

to collector

This figure shows the components of DFSTrace on a client workstation. The system call codein the operating
system kernel is instrumented with hooks that gather data on file system operations. Trace datais packed into
records by the logging module, and written into a circular memory buffer. The buffer is exported as a device;
the user-level agent processreads trace data from the buffer through the device driver interface.

Figure 2: Tracing on a Client Workstation

length opcode | flags
error | vnode process id
time (sec)
time (usec)

-— A4 bhytes ——

This figure shows the raw trace record header. The first field contains the length of the record in bytes. The
return code of the call isin the “error” field. Each half of the “vnode” field indicates the file system in which
objectsin therecord reside. For records referencing more than two objects (such aslink and rename), aseparate
word is provided for this purpose. The “flags’ field is reserved for internal errors; flags are set if data required
for the record (such as pathnames) could not be obtained. The rest of the record consists of the system time,
in seconds and microseconds. The trace library, described in Section 5.2, uses the length and vnode fields
internally. The header it presentsto analysis programs omits these fields.

Figure 3: Trace Record Header

Record

Itemsrecorded (with header)

open
cl ose

stat, |stat
seek
chdir,
execve
access,
creat
nkdi r
chown
r enane

chroot, readlink

chnod

i nk

sym i nk
rondir, unlink
truncate

uti nes

nknod

nount

unnount

fork

exit, settimeofday
read, wite

flags, mode, file descriptor, index, user ID, old size, size, file type, fid, directory
fid, path

file descriptor, index, # reads, # writes, # seeks, bytes read, bytes written, size,
fid, file type, open count, flags, caller, mode

fid, file type, path

file descriptor, index, # reads, # writes, bytes read, byteswritten, offset

fid, path

size, fid, owner, path

fid, mode, file type, path

fid, directory fid, old size, file descriptor, index, mode, path

fid, directory fid, mode, path

owner, group, fid, file type, path

from fid, from directory fid, to fid, to directory fid, size, file type, # links, from
path, to path

from fid, from directory fid, to directory fid, file type, from path, to path
directory fid, fid, target path, link path

fid, directory fid, size, file type, # links, path

old size, new size, fid, path

accesstime, modify time, fid, file type, path

device, fid, directory fid, mode, path

fid, read/write flag, path

fid, path

child pid, user ID

(header only)

file descriptor, index, amount

| ookup component fid, parent fid, file type, component path
get sym i nk fid, component path, link path

r oot component fid, target fid, path

dunp system call counts

not e annotation

Thistable showsthe contents of trace records for each operation. Records correspondingto UNIX system calls
are shown in the upper portion of thetable. Thel ookup, r oot ,andget symi i nk records are generated
during name resolution. The not e record allows users to embed notes in a trace, for example to indicate a
particular point in the execution of an application.

Figure 4: Contents of Trace Records

section, we give the history behind the data we decided to collect, and discuss some of the surprises aong the way.
Then we discuss the content of the data we currently collect.

2.3.1 Evolution

We wanted to collect data on all system calls relating to the file system, and any other calls that would aid in post-
processing (such as f or k and exi t)}. We were not certain that tracing r ead and wr i t e calls would be feasible,
because of the large amount of data that was likely to result. We began by estimating the amount of data a client
workstation would generate in a day. We instrumented Mach®® kernels running on IBM PC/RTs to count the system
cals of interest. Based on the information we expected to record for each system call, we estimated that each
workstation would generate 6.2 MB per day without reads and writes, and 31 MB per day with reads and writes. We
decided not to record reads, writes, or seeks, but only to record summary information on those operations when the
file was closed.

A prototypeimplementation yielded only half the datavolume we expected. We added tracing of seek calls, thinking
that it would not increase data vol ume significantly because non-sequential access was uncommon in our environment.
We were very surprised when data volume increased dramatically from several workstations. The culprit was a
monitoring program that displays the status of a variety of workstation resources, such as disk and CPU utilization.
The program obtai nsitsinformation by reading from/ dev/ krmem aspecia file that allowsrandom locationsin kernel
virtual memory to be accessed’®. Unfortunately, the program has to seek to each location in memory containing data
of interest. One could argue that having to read kernel memory to obtain information on resource utilization represents
adeficiency inthe UNIX system call interface. Given that, and the fact that we were not keenly interested in accesses
to specia files, we disabled the reporting of individual seeks on/ dev/ kmem The number of seeks is contained in
the close record, so our data still showsthat large numbers of non-sequential accesses are performed on/ dev/ knem

We aso implemented collection of read and write data as an option. Our workstations do not normally enable it
because it is not critical to our studies. We can obtain reasonably detailed information about access patterns from
summary statistics recorded in close and seek records, including the number of reads and writes and the amount of
data read and written.

We discovered acritical omissioninthe dataafter usingit asinput to asimulator for the Codafilecache manager. The
cache manager receives requests not as system calls, but as Vnode operations!’. The mapping between system calls
and V node operationsis reasonably direct, except for name resolution. Name resolutionisthe mapping of apath name
to a fixed-length low-level identifier. It involves traversing the path name by component, and is performed beneath
the system call interface. Althoughit is possible to simulate name resolution if a snapshot of the file system exists'é,
snapshots are not feasible in our environment because workstations access large distributed file systems such as AFS.
Hence we added support for tracing name resol ution operations.

2.3.2 TraceRecords

Figure 4 lists the data we now collect. All records begin with a fixed-length header that includes the length of the
record, opcode, process ID, error code, and time. The raw form of the header is depicted in Figure 3. The upper
section of Figure 4 liststhe contents of records corresponding to UNIX system calls. In general, these records contain
the arguments and return values for the call, and internal information on the objectsinvolved in the call.

Trace records are variable in length. Most records contain a path name and one or more low-leve file identifiers, or
fids. The format and length of the fid depends on the file system in which the object resides, and can vary from eight
to sixteen bytesin length. The file system containing each object referenced in the record is also recorded, to alow
comparisons of local and distributed file system usage, and to identify references to the same object through different
workstations or pathnames. We record the fids of al objects that could be affected by an operation. For example, an

We assume familiarity with the UNIX system call interface. For more information, see Section 2 of the UNIX Programmer’sManual 15,

--— 4 bytes ———» ~-— 4 bytes ——»

record header record header
thread address thread address
flags mode
S directory fid S g .
descriptor index
old size < fid S
() pre-record size
owner id type
pathlength

T pathname T

(b) post-record

This figure shows an example of a split record, in this case the OPp€en record. Variable-length fields are
bordered with broken lines. Fields from the “fid” or “directory fid” onwards may not be present if errors occur
while obtaining the data. If such an error occurs, aflagis set in the flagsfield of the record header.

Split records consist of a pre-record and a post-record. The pre-record, shown on the left, is written if data of
interest will be destroyed during the system call. This record may or may not be present. In this example, a
pre-record is written if the file existsand it is being recreated or truncated at open time. The “old size” field of
the open pre-record indicates the size of thefile at open time if it already exists. The post record, shown on the
right, is always present. It contains datathat is available at the end of the system call.

Figure5: Split Record

open might create a new file, so we record information on the parent directory of thefile. A r enamne of afiletoa
different directory where the new name already existsinvolves four different objects.

Several of the system calls we record involve file descriptors, which are used by processes to perform 1/0. A file
descriptor isaresult of asuccessful open system call. Itisused by the kernel as an index into atable of open filesfor
the process. Each entry in the process open file table points to an entry in the system open file table, which contains
information about the file represented by the descriptor. New descriptorsfor an open file may be created for a process
using thedup system call. If aprocess creates a child process, al of the parent’s descriptors are inherited by the child.
To avoid recording calls like dup and keeping track of aliasing, werecord thefile'sindex in the system open file table
along with the descriptor.

The lower section of the table corresponds to auxiliary or internal operations. The not e record alows programs to
deposit additional information into the trace. Users have found this facility convenient for annotating experiments.
Therest of the operationsin the lower part of the table occur during name resol ution.

3 Kernd Instrumentation

Our goal ininstrumenting the kernel was to modify as little of the existing code as possible. We added two modulesto
the kernel — one containing code for packing trace records, and another for managing the circular buffer. The kernel

instrumentation consists of three layers, asillustrated in Figure 2.

The topmost layer of instrumentationisin the system call code, which contains hooksto the packing code. For many
system calls, asingle one-line hook at the end of the call is sufficient to capture the data of interest. The hook appears
at the end of the call to record the return code and any output parameters.

Unfortunately, not all system callsare structured in away that allows all the desired datato be obtained with one hook.
Some system callsdestroy data. The obviousonesareunl i nk and r ndi r . Lessobviousexamplesincluder enane,
which may remove thetarget if it exists, and open, which will remove a pre-existing file if the “create” flag isset. For
these cases, there is a hook to record information on the data about to be destroyed, in addition to the hook at the end
of thecall. These "split" records are reassembled by the post-processing library and presented as single records to the
user. An example of asplit record is shown in Figure5.

For other system calls, the data of interest is scattered throughout several modules. Examples of thisare nkdi r and
open. When afileor directory is created, the parent directory changes. Information on the parent directory is most
conveniently obtained in aroutine called by the system call. We use split records in these cases to record information
that isnot available in the system call itself.

There are sets of system calls that are similar enough that their code is a veneer over a common routine. Examples
of this are open and cr eat, nknod and nkdi r, st at and | st at, and the attribute-setting variants chnod,
chown, utinmes,andtruncat e. Inthese cases the best location for the hook is in the common routine, but it is
not always obvious from that routine which operation is the caller. For the cases that are not easily deduced, we have
added a parameter to the common routine that indicates what the calling operationiis.

Another complication is early return points. We have instrumented certain early return points because they generate
file system activity. For example, a common early return point in system calls that take pathnames as arguments is
when thereis no file corresponding to the pathname. Even though the system call fails, we still record the call because
the system must perform name resolution to discover the error, generating file system activity.

It isimportant to be able to match file opens and closes in a trace. Files are closed in severa places other than the
cl ose system call. For example, filesare closed when a process exits. They are also closed in avariant of dup which
allows the new file descriptor to be specified. If thereis already afile open with that descriptor, the system will close
it first. Under certain conditions, files are closed in execve aswell. Each of these locations must be instrumented to
capture file close events compl etely.

All of the hooks are above or within the vhode interface, which isalayer in the kernedl that alows a variety of local,
remote, or even non-Unix file systems to be incorporated in a single system. Since the vnode layer is file system
independent, the hooks capture references to any file system hooked into the kernel. There is only one piece of file
system dependent tracing code, namely, aroutinethat packs fidsinto trace records.

Trace records are packed in the left middle layer of Figure 2. The routinesin thislayer gather any additiona datathat
may be needed for the records, such as file attributes and fids. Packed records are placed in a circular memory buffer,
in the bottom left layer of Figure 2. The interface to this buffer is that of a simple device driver supportingr ead,
sel ect,andi oct| systemcalls. If the buffer wrapsaround, ther ead call returnsan error and advances the “bytes
read” counter by the amount of the read. Through thei oct | call, tracing may be turned off or on dynamically, and
tracing of various classes of operations (such as reads and writes or name resolution) may be enabled or disabled.

4 Collection Machinery

As described in Section 2.2, the collection machinery consists of the agent daemons running on client workstations,
and collectorsrunning on a small number of servers. An optional tape daemon may be used at collection sites to spool
data to tape.

One of thechallenges of long-term data coll ectionis coping with changesin tracing software and theformat and content
of the traces. It is desirable to structure the system so that older traces are till usable, even though they may not be

compatible with newer ones. We have incorporated version information into each component of DFSTrace, and the
system embeds thisinformation in the header of each trace. Thusthe traces are in some sense self-documenting. The
library is structured to accept any of the various formats, and determines which it isby reading the version information
in the trace header.

41 Agent

The goa of the agent is to extract trace data from the kernel without consuming excessive resources on the host
machine. The agent is implemented as a multi-threaded user-level process, with one thread reading data from the
kernel throughthetracing device described in Section 3, and another sending data to the collector viaremote procedure
call. We used the LWP threads package, which provides non-preemptive (co-routine) threads, and the RPC2 remote
procedure call package!®. The agent reads blocks of data from the kernel and buffers them in memory. It uses two
fixed-size buffers, onefor each thread, consuming roughly 1 MB of memory by default. Users can specify a different
memory limit using a command line argument. The agent istypically started at boot time.

The agent’s kernel thread isresponsiblefor reading blocks of trace dataout of the kernel before the datais overwritten.
If data has been overwritten, an error isreturned to the agent on its next read. The agent reports the amount of datalost
before a successful read, if any, in a header that is prepended to the trace data block. In addition, the thread records
whether or not there were problems communi cating with the collector before the read. This gives some indicationwhy
the datawas lost. We describe that further below. The header aso contains a block sequence number. Thisis useful
in post-processing the traces, a so described bel ow.

The network thread takes abuffer filled with trace data blocks and headers and sendsit to acollector. If communication
fails, the network thread records the failure and attempts to resend the data. It backs off exponentially if subsequent
resends fail. Note that while thisis happening the kernel thread may run out of space to put new trace data and fall
behind. We decided to record the server failurein the agent header to see why data gets lost. We have found that most
data | osses occur because of contention for resources on the client, and not because of network failures.

The agent respondsto several UNIX signalsthat allow users to tell the agent to flush data or shut down. Users may
also specify at what level operations are to be traced using a command line switch. The operations are grouped into
the following independent categories — basic system calls (open, close, etc.), read and write system calls, and name
resolution. Most of our clientstraced the basic system calls and name resol ution.

4.2 Collector

The collector is a multi-threaded server that receives trace data from potentially many hosts. Datais stored on disk
in staging files; traces from different hosts are stored in different staging files. After a staging file reaches a certain
size (about 5 MB), the collector starts a new staging file for that host, and the filled file may be archived to tape.
The collector prepends a header to each staging file containing version information for the tracing kernel, agent, and
collector —together these define the format of thetrace. The header also containsthe client’s network address and boot
time, and the start time of the agent. The format of raw trace data.is shown in Figure 6.

Periodically, the collector prints summary statistics on the clients from which it is receiving data. The default period
for the summary report isone hour. A sample summary reportisgiveninFigure7. It iseasy to see from thissummary
which hosts have not connected recently, and which hosts are active. Thereisalonger form of the summary that also
includes the client birth time and the versions of client software.

4.3 TapeDaemon

The tape daemon is an optional component of DFSTrace that automatically archives filled staging files to tape. It can
scan multiple data partitions, and switch between multipletape drives. The tape daemon responds to a signal to scan
for new data to archive. The collector uses this signa to notify the tape daemon when a staging file is ready to be
archived.

data

block header
trace header

(a) Trace Structure

host address / " variable-length
- r .. records ..

boot time sequence # e et

agent start level [server

k-ver | a-ver bytes lost

c-ver

(b) Contents of Fieldswithin a Block

This figure showsthe format of raw trace data. The agent reads trace data from the kernel in fixed-size blocks,
and prepends a header to each block containing the block sequence number, the level of tracing, the number of
bytes lost before the block (if any), and a flag indicating the status of the agent’s connection to the collector.

The collector receives a sequence of block headers and blocks, and prepends a trace header containing the
traced host’s network address, time of the last system and agent restart, and the versions of the tracing kernel,
agent, and the collector.

Figure 6: Format of Trace Data

Host last transfer # bytes (transfers) conn open

128.2.209.204 Jan 7 17:20:24 2037568 (4) Jan 5 22:05:52
128.2.222.111 Jan 7 17:25:47 509392 (1) Jan 5 22:03:44
128.2.209.213 Jan 7 16:34:12 509392 (1) Jan 5 22:03:44
128.2.209.215 Jan 7 17:05:49 2546960 (5) Jan 5 21:59:28
128. 2. 209. 217 e 0 (0) e

128.2.206. 77 Jan 7 17:00: 04 509392 (1) Jan 5 22:08:00

Figure7: Collector Summary Report

5 Post-processing

So far, we have discussed how trace data is generated. In this section, we discuss how to use trace data. Once the
trace data is generated, it must pass through a post processing step that assembles the longest possible trace subject
to a set of conditions. Thisisdiscussed in Section 5.1. In Section 5.2, we discuss the trace library, which simplifies
trace analysis by hiding the underlying structure of a trace beneath a convenient programming interface. Then in the
last part of this section, we discuss the summary suite, which is a set of analysis programs that generates summary
statisticsfor atrace. We run this suite on every trace and place the resultsin adatabase to aid usersin identifying and
selecting traces for analysis.

5.1 Maximizing Trace Length

We would like to guarantee that the traces are complete, namely, that they contain every event that occurred on the
client intheinterval covered by thetrace. To do this, a post-processing step is necessary to transform staging files into
completetraces. This post-processing step assemblesthelongest trace from staging files, subject to several termination
conditions. These conditions correspond to machine restarts, agent restarts, and data losses. Data are recorded by the
agent in the data block header. When a loss is detected, the trace is split a that point. Machine reboots and agent
restarts cause new staging filesto be created. The new staging files have different trace headers than their predecessors.

The length of post-processed traces varies. Our traces range from approximately five minutes to weeks in length, and
approximately 1 MB to 800 MB. A few traces were broken at 800 MB even though none of the trace ending conditions
applied, because they were limited by the size of the disk partition on which they were constructed.

5.2 TraceAnalysisLibrary

The goasof thetrace analysislibrary areto provideaconvenient programmer’sinterfaceto thetraces and to implement
common operations. The underlying structure of thetrace is hidden behind a simpleinterface, shownin Figure 8. The
library is structured to accommodate traces of various formats, including those of other researchers, while maintaining
a consistent interface to the programmer.

The operations for initialization and termination are shown in Figure 8(a). TheTr ace_Open cal opensthetracefile
and determines the format of the trace by reading the preamble at the beginning of thefile.

Thelibrary calsfor obtaining records are shown in Figure 8(b). The central call isTr ace_Get Recor d. Thelibrary
unpacks the raw, structured trace, and presentsit to the application as a sequence of records through thiscall. The call
returns the next record, subject to afilter specification, if any, as a pointer to a record structure. The library allocates
the storage necessary for the record and any pathnames included in the record. To free the storage, programs call
Trace_FreeRecord. The Trace_CopyRecor d copies arecord, allocating new storage for both the record and
any pathnames it references.

The library maintains agood deal of bookkeeping on thetrace, such as keeping track of open files, gluing split records
together, and building and tracking process trees, so that groups of processes may be studied in aggregate (e.g. nake).
Because of this, the records that the library presentsto the programmer are often more detailed than shown in Figure
4. For example, the library simulates the system open file table for each trace it processes. This alowsit to provide
data from the open record for file descriptor based operations (e.g., seek and close), such as pathnames.

Certain fields are common amongst a set of records, such as pathnames and fids. In Figure 8(c), we show routinesthat
obtain those fields from records, alowing the fields to be treated generically. The call Tr ace_Get User obtainsthe
user ID (uid) that generated the record. The uid is not present in all records, only the fork record. The library keeps
track of process activity through fork and exit records, and thusis able to determine which user generated arecord in
most cases.

In Figure 8(d), we show generic printing routines for records and the file preamble, which may differ in traces of
different versions. Miscellaneous calls are shown in Figure 8(€), such as for obtaining statisticson atrace.

10

Trace_-Open(fil enane)
Trace SetFilter(filep, filter_fil e_.nane)
Trace.C ose(fil ep)

(a) Initialization and Termination

Trace_Get Record(fil ep)
Trace_CopyRecor d(sourcep, destpp)
Trace_FreeRecord(fil ep, recordp)

Trace_Fi dsEqual (fidlp, fid2p)

Trace_CGet Fid(recordp, fidplist, nump)
Trace_CGet Fi | el ndex(recordp)

Trace_Cet Fi | eType(recordp)

Trace_Cet Pat h(recordp, pathplist, nump)
Tr ace_CGet Ref Count (recor dp)

Trace_Get User (fil ep, pid, uidp)

(c) Field Retrieval

(b) Record Manipulation

Trace_Print Preanbl e(fil ep)
Trace_Print Record(recordp)
Trace_DunmpRecor d(recordp)
Trace_OpcodeToSt r (opcode)
Trace_Nodel dToSt r (addr)
Trace_OpenFl agsToStr (f1 ags)
Trace_RecTi neToSt r (recor dp)
Trace_Fi | eTypeToStr (type)
Trace._l nodeTypeToStr (type)

Trace_Fl agsToStr (fl ags)
Trace_Fi dPtrToStr (fidp)

|Trace_Stats(fiIep, st at p) |

(6) Miscallaneous (d) Output and Formatting

Figure8: Library Interface

It iscommon to want to include or exclude varioustypes of records from atrace, such as by uid or opcode. Thelibrary
supportsfiltering of various kinds, such as by start and end time, opcode, uid, and path name. The library isanatura
place to implement filtering because it is such a common operation, and because certain types of filtering require data
structures the library already maintains, such as the open file table for matching opens and closes. Filtering fits neatly
beneath the Tr ace _Get Recor d cal. Once afilter is applied to the trace, the library returns only those records that
satisfy thefilter specification.

Filtersare specified in afilter file, whichisapplied toatraceusing Tr ace_Set Fi | t er . Filter specificationstake the
form<attri bute> [<nodi fi er>] <val ue> <val ue> ..., whereanatributeistheopcode, for example.
To keep specifications short, an optional modifier can be used to specify values to be included or excluded from the
trace. Figure 9 gives an example of afilter.

5.3 Summary Suite

Asthebody of datawe collected grew larger, summary information of variouskindsfor each trace became necessary, so
that auser confronted with 150GB of thisdata has some idea whereto begin. We have built an on-line database for the
traces that contains, for each trace, summary informationincluding composition by system calls, access characteristics,
and activity levels. The summary information is the output of a suite of analysis programs run on each trace before
being archived on tape.

The output is placed in an on-line collection of summary resultsto assist in finding appropriate traces for study. The
suite is comprised of the programst st at , user s, sessi ons, and pat t er ns. Each of these programsis run on
the trace without filtering, thent st at , sessi ons, and pat t er ns are run for each active user found in the trace.
The programs are described below, al ong with sample output from each.

The user s program classifies trace records by user ID where detectable. The user ID isfound in thef or k record
for the process or any child processes it creates. If the process was created before the trace starts, and creates no child
processes, it falsinto the“Unknown” category. Output for user s isshown in Figure 10. UidsO0, 7, 9, 11, and 4035
are system IDs. User 2336 isthe primary user of the workstation from which the trace was coll ected.

Thet st at program prints a variety of statistics on a trace, including a breakdown of trace records by opcode and

11

opcode open close stat Istat chdir chroot creat nkdir access chnod readlink
getsym i nk chown utimes truncate rename |ink symink unlink rrmdir | ookup root
type directory regular link

refcount 1

error 0

mat chf ds

start 21-Feb-91, 12: 00: 00

end 22- Feb-91, 00: 00: 00

pi d exclude 326 2961 3640 4369

pat h excl ude /dev/ nul

This figure shows an example of a trace filter. The opcode attribute specifies a subset of operations to be
included in the filter. The user could listed the opcodes to exclude in this example. In addition, the objects
referenced in the records must be either directories, files or symbolic links (no device or special files). The
“refcount” filter saysfor operationsthat record a reference count (e.g., close, unlink), only return those records
with a reference count of 1. The “matchfds’ filter says only return close, read, and write records that have
matching open records. The pid filter in this example excludes certain long-running system daemons. The path
filter is asimple example; the library supports regular expressionsfor pathname matching.

Figure 9: Example Filter

ui d processes records (%

2336 1574 643397 (69. 6)
0 975 260272 (28.2)
Unknown 3 15936 (1.7)
7 46 3326 (0.4)
1516 15 672 (0.0)
9 6 388 (0.0)
4840 9 315 (0.0)
4035 2 96 (0.0)
11 1 58 (0.0)

Figure 10: Output of user s.

12

file systems referenced. Figure 11 shows the output of t st at . The percentage is by number of records, not by
volume. The “fail” column isthe number of operations that failed. Name lookup usualy has a high percentage of
failing operations because of shell pathname searches. The difference between “records’ and “raw records’ reflects
the presence of split records. The difference between “records’ and “records returned” reflects the presence of afilter.

The pat t er ns program summarizes the file reference patterns based on cl ose records in the trace. The summary
includes the number of read-only, write-only, and read-write accesses to files, as well as bytes transferred for each
access type. Each access typeis further divided into whole-file transfer, other sequential access, and random access.
An access isawhole-file transfer if the amount of dataread (or written) is equal to the size of thefile, and there were
no seeks. If there are no seeks, but the amount of datais not equal to the size of the file, then the access falsinto the
“other sequential” category. If seeks occur, the access is considered random.

The summary informationin cl ose records (number of bytesread, written, etc.) iscumulative. For example, if afile
is open and the descriptor isdup’ ed, and then the file is manipul ated by both agents, the statistics reported will be the
sum of their accesses, and there is no way to determine from the final ¢l ose who did which accesses. If one of the
agents only reads the file, and the other only writes, the complete session, from datainthe last cl ose record, will be
reported as a read-write access. Figure 12 summarizes the file reference patterns in the trace for processes owned by
user 2336. The format is reminiscent of that used in the study by Baker®.

Given atrace over some length of time, how does one decide which periods to analyze? For example, one may be
interested in only those periods during which a user is active. Activity can be defined in terms of the number of
operations performed during a unit of time. Given that definition, an active period would consist of some number of
intervalsin which the activity (number of operations) exceeds some threshold. One may want to include intervalsin
which the number of operationsfalls below the threshold, as long as the decrease in activity is transient. We cal the
resulting period asession, illustrated in Figure 13.

Thesessi ons programfindssessionsin atrace, giventheinterval length, minimum session length, activity threshold,
and transient length as parameters. Defaults were chosen ad-hoc as follows: an interval length of 15 minutes, session
length of 16 intervals (4 hours), activity level of 16 operations per interval, and atransient length of 4 intervals. The
default settingslocatelong stretches of fairly low activity. The summary suite usesthree settings—ow activity (session
length of one interval, other parameters at default values), medium activity (session length of one interval, activity
level of 180 operations per interval), and high activity (session length of one interval, activity level of 900 operations
per interval). Figure 14 showsinterva s of high activity for the primary user of aworkstation.

54 Replaying Traces

One of the principal advantages of trace-based workloadsisrealism. The most direct way to subject a file system to
such aworkload isto replay atrace on it. To replay atrace, one must first construct a skeleton of the file system over
which the traced operations will execute. Then commands representing operations in the trace are replayed on this
skeleton.

We have developed an “untrace” facility that allows a trace to be replayed in a subtree of the name space. Untrace
takes atrace asinput, and produces command filesfor constructing the skeleton and replaying thetrace. Sample output
for the skeleton and replay command filesis shown in Figure 15. Untrace is useful for creating realistic, repeatable
workloads.

6 Statusand Experience

DFSTrace runs on DECstations, Sun 4s, SPARCstations, IBM RTs, and i386s running Mach 2.6. We have traced
up to 36 machines in various projects for up to two years. In the remainder of this section, we present qualitative
observations about DFSTrace, paying particular attention to the requirements set forth in Section 2.1.

The most important requirement of DFSTrace was that it be unobtrusive. We have found that the performance
degradation caused by tracing is virtualy unnoticeable to users. The system requires very little user intervention,

13

Trace of host 128.2.209.215, versions 3.1, 3.1, 3.2

Host booted Mon Mar 30 12:40:29 1992, agent started Mon Mar 30 13:19: 00 1992
Trace starts Thu Apr 2 10:15:07 1992, ends Sat Apr 4 06:30: 38 1992
19356916 bytes, 448405 raw records (2/sec), 418887 records, 418887 returned

Opcode num % fail ufs af s cfs nfs
OPEN 29521 6 1350 27185 1179 121 0
CLOSE 45913 10 0 44124 1567 222 0
STAT 13214 2 392 11478 992 352 0
LSTAT 30436 6 385 29705 258 88 0
SEEK 30623 6 0 28762 1857 4 0
EXECVE 4130 0 2449 1583 96 2 0
EXIT 1689 0 0 0 0 0 0
FORK 1689 0 0 0 0 0 0
CHDI R 3376 0 2 3296 59 21 0
UNLI NK 620 0 243 692 16 46 0
ACCESS 1042 0 627 111 161 143 0
READLI NK 18 0 15 1 6 11 0
CREAT 670 0 49 1014 26 202 0
CHMCD 75 0 3 65 5 5 0
SETREUI D 539 0 0 0 0 0 0
RENAVE 120 0 15 364 15 15 0
RVDI R 92 0 90 184 0 0 0
LI NK 73 0 0 219 0 0 0
CHOWN 80 0 1 80 0 0 0
MKDI R 6 0 1 4 0 6 0
SYMLI NK 0 0 0 0 0 0 0
SETTI MEOFDAY 0 0 0 0 0 0 0
MOUNT 0 0 0 0 0 0 0
UNMOUNT 0 0 0 0 0 0 0
TRUNCATE 88 0 0 88 0 0 0
CHROCT 0 0 0 0 0 0 0
MKNGD 0 0 0 0 0 0 0
UTI MES 52 0 8 38 0 6 0
READ 0 0 0 0 0 0 0
WRI TE 0 0 0 0 0 0 0
LOOKUP 210856 47 5606 359193 48489 8424 0
GETSYM.I NK 21211 4 0 17730 3429 52 0
ROCT 20142 4 0 35776 3713 795 0

This figure shows the output of t St at . The % column shows the the number of records of a given opcode
as a percentage of the number of raw records. Dump records, containing system call counts, are not reported
by t st at , although they are reflected in the record counts. The number of objects referenced dependson the
operation and whether or not there was a failure; it will not necessarily be the same as the number of records.

Figure11: Output of t st at

14

Access Type

Read- onl y

Wite-only

Read-write

Tot al

Accesses (% Bytes (% Transfer Type Accesses (% Bytes (%

Whol e-file 3022 (57.1) 14173603

5289 (80.4) 26470408 (70.3) Other Seq 1154 (21.8) 1513723
Random 1113 (21.0) 10783082

Whol e-file 990 (80.0) 5909950

1237 (18.8) 10651214 (28.3) Other Seq 0 (0.0 0
Random 247 (20.0) 4741264

Wol e-file 0(0.0 0

49 (1 0.7) 543203 (1.4) Other Seq 7 (14.3) 346760
Random 42 (85.7) 196443

6575 37664825

Figure 12: Output of pat t er ns for user 2336

Activity Level (# operations)

Time (Intervals)

Thisfigureillustrates an active sessionin atrace. A session is composed of a series of time intervals for which
activity (in number of operations) exceeds some threshold «, possibly including some number of transient
intervals below the threshold. The figure shows the activity levels for a short trace. If the minimum number of
intervalsin asessionis four, and oneinterval below the threshold is allowed, then there is one active sessionin
the trace as shown above.

Figure 13: Example of a Session

15

—_—

(
(
(

(
(
(

.5)

7)

.7)

.5)
.0)
.5)

.0)
.8)
.2)

Trace starts Wed May 6 06:30:42 1992

Begin Wed May 6 08:10:40 1992, end Wed May 6 09:40:40 1992 (1.49 hours)
Activelntervals = 1, Activity = 3821m:n (34m 3787n)

Begin Wed May 6 09:40:40 1992, end Wed May 6 12:55:40 1992 (3.25 hours)
Activelntervals = 6, Activity = 10405m+n (98m 10307n)

Begin Wed May 6 13:10:40 1992, end Wed May 6 15:53:40 1992 (2.72 hours)
Activelntervals = 4, Activity = 7423mtn (4m 7419n)

Trace ends Wed May 6 15:55:28 1992

This figure shows intervals of high activity for the primary user of aworkstation. High activity is defined as
900 operations per interval, and a session length of oneinterval. Each active sessionis reported, along with its
length and the amount of activity in mutating and non-mutating operations.

Figure 14: Output of sessi ons for user 2336, high activity

mkdir root

mkdi r root/ufs.700.800

mkdir root/ufs.700.800/. LOCALROOT

mkdir root/ufs.700.800/.LOCALROOT/ usr 2

mkdir root/ufs.700.800/.LOCALROOT/ usr2/1ily

mkdi r root/ufs.700.800/.LOCALROOT/ usr2/1ily/src

mkdir root/ufs.700.800/.LOCALROOT/ usr2/1ily/src/xm nes

open root/ufs.700.800/.LOCALROOT/ usr2/1ily/src/xmnes.c 2562 -1

open root/ufs.700.800/.LOCALROOT/ usr2/1ily/src/Makefile 2562 -1
mkdir root/ufs.700.800/.LOCALROOT/ sysO

mkdi r root/ufs.700.800/. LOCALROOT/ sys0/ cs

mkdi r root/ufs.700.800/.LOCALROOT/ sys0/ cs/i ncl ude

mkdi r root/ufs.700.800/.LOCALROOT/ sys0/ cs/ i ncl ude/ sys

open root/ufs. 700.800/. LOCALROOT/ sys0/ cs/ i ncl ude/ sys/types. h 2562 -1
open root/ufs. 700.800/.LOCALROOT/ sys0/ cs/include/stdio.h 2562 -1

(a) Skeleton commands

stat root/ufs.700.800/.LOCALROOT/ usr2/1ily/src/ Makefile

open root/ufs.700.800/.LOCALROOT/ usr2/1ilyl/src/Makefile 0 296
close 296 -1

open root/ufs.700.800/.LOCALROOT/ usr2/1ily/src 0 298

stat root/ufs.700.800/.LOCALROOT/ usr2/1ily/src/xmnes.c

open root/ufs. 700.800/.LOCALROOT/ sys0/tnp/ cc. 131914 2562 301
stat root/ufs.700.800/.LOCALROOT/ sys0/ cs/incl ude/ sys

open root/ufs. 700.800/.LOCALROOT/ sys0/ cs/incl ude/ sys/types.h 0 302
close 302 -1

stat root/ufs.700.800/.LOCALROOT/ sys0/ cs/incl ude

open root/ufs. 700.800/.LOCALROOT/ sys0/ cs/include/stdio.h 0 305
close 305 -1

(b) Replay file

Thisfigure presents sample output from the skeleton and replay files generated by untrace. The trace was taken
during a compile of the game XM Nes; we show the beginning of the compile. The commandsin (&) show
the construction of the file system skeleton, starting at “root”. The open calls in the skeleton file create the
named files. Commandsin (b) are operations derived from the trace. The arguments to the open calls are the
flags with which the fileis to be opened, and an index which, if nonnegative, is used to refer to the openfile.

Figure 15: Sample untrace output

16

usualy just a installation time. DFSTrace is prevented from consuming excessive client resources by using fixed-
length buffersin both the kernel and the agent. If the buffer capacity is exceeded, dataislost.

Data |l osses occur for two reasons. First, afailure may occur, such as a server crash or a network outage, for which the
buffering on the client isnot sufficient. Such failuresare afact of lifein adistributed environment. The second source
of datalossisimproper tuning of the kernel and agent buffer size ontheclient. Clearly, one cannot trace system events
in unlimited detail, and expect the client to keep up with afixed amount of resources. 1deally, one should choose buffer
sizes that balance the amount of data being generated with the resources available on the client. If the traced workload
generates alarge amount of data, either the buffer sizes must be increased, or the losses must be accepted.

Data losses can yield information about the clients and the system in general. Persistent losses can be an indication of
improper tuning or of system or hardware failures. This class of losses generaly merits investigation. For example,
one of our clients had a faulty Ethernet card that caused it to lose more data than it sent. Another group of machines
was separated from the collector by a gateway that was faulty, so those clientstended to |ose data more than clientson
the same side of the gateway as the server. Asan example of improper tuning of the agent buffers, we found that some
clients running a certain text processing tool lost data. When they started the tool, it read a large number of font files
and generated data faster than the agent could read it from the kernel.

Our use of extensive version information has paid off. The system has gone through three mgjor revisions and many
minor revisions, and thetransitionswere painless. In additionto compatibility checks, versioningisuseful for detecting
buggy versions of traces. We have had one buggy release of the tracing kernel that generated unusable traces. Using
version information we were able to find and discard traces generated by that rel ease of the kerndl.

The separation between data collection and interpretation is critical not only for good performance but aso for
extensibility. Although extensibility was not one of our origina goals, this separation allowed others to extend
DFSTrace to record other classes of events, and till take advantage of the existing collection machinery. The
extensions are discussed morein section 8.

An important lesson we have learned isthat is critical to use the data as soon as possible to ensure that it is complete
and sufficient for its intended purpose. We went through several iterations of collecting and then attempting to use
data before we arrived at the final set and content of records. The traces were validated using comparison to known
workloads, such as the Andrew benchmark?®, and comparison to kernel data structures.

Thelibrary has provento beeffectivein simplifying devel opment of analysisprograms. It allowstheuser to concentrate
on the analysis of the trace rather than on manipulating the trace itself. For example, Kumar was able to read the
library documentation, then write and debug the analysis program for his study?! in about one hour.

7 Evaluation
7.1 Tracing Overhead

This section presents the performance of various|evels of tracing for the Andrew benchmark. The benchmark was run
in threefile systems —theloca Unix file system, the Andrew file system, and the Codafile system. In each file system,
tracing was run at four levels. The default tracing level records al of the operations listed in Figure 4 except for
read and write system calls and name resolution. We then added read and write calls and name resol ution separately.
Tracing all activity records all of the operationslisted in Figure 4.

Figure 16 shows the elapsed time of the Andrew benchmark for each level of tracing. The overhead ranges between
3-7%, depending on the events traced. Tracing a large compile had lower overhead than the Andrew benchmark,
ranging from 3-5%. Figure 17 shows the amount of trace data generated per run of the Andrew benchmark, again at
four tracing levels and in threefile systems. Background system activity accounts for the variability in the amount of
data generated. The benchmark under AFS generated more data because of longer pathnames and longer fids. The
benchmark under Coda generated more data than under AFS because the Coda cache manager operates at user level
as opposed to withinthe kernel. Thusits activity is captured in the trace.

17

Elapsed time (min:sec)

Tracing L evel UFS % | AFS % | Coda %
off 2:20 (6) 0% | 3:18 (6) 0% | 3:40 (5) 0%
default 226 (4) 42% | 3:22(4) 2.0% | 314713 3.1%
default, read/write | 2.250) 3.5% | 3:119(1) 05% | 3:52((6) 5.4%
default, nameres | 2.29(1) 6.4% | 3:26 (3) 4.0% | 3:54(55) 6.3%
all 227(1) 5.0% | 3:25@3) 35% | 3:55(9) 6.8%

This table presents the elapsed time of the Andrew benchmark for four different tracing levels and on three
different file systems. The mean of three runs is given in minutes and seconds. The standard deviation in
seconds is given in parentheses. UFS is the local Unix file system. AFS is the Andrew file system. The
percent slowdown for each trace level is calculated as 100 X (tyraced — toff)/toff- The benchmark wasrun ona

DECstation 3100. File cacheswere warm for the AFS and Coda results.

This table shows the amount of data generated in bytes for four different tracing levels on three different file
systems during the Andrew benchmark. Each entry is the mean of three runs. Standard deviations are givenin

parentheses.

Figure 16: Tracing Overhead for the Andrew Benchmark

Data (bytes)
Tracing L evel UFS AFS Coda
default 512813 (3281) | 561356 (3782) | 614924 (509)
default, read/write | 765381 (159) | 818880 (1473) | 1099680 (5745)
default, nameres | 1329764 (1265) | 1556908 (1360) | 1578433 (1272)
al 1622268 (24020) | 1848928 (11727) | 2087077 (2598)

18

Figure 17: Volume of Trace Data Generated during the Andrew Benchmark

7.2 Importance of Kernel Implementation

In section 2.1, we stressed theimportance of good performanceinalong-termtracing system. We used thisrequirement
along with application transparency to justify a kernel implementation of DFSTrace. But is a kernel implementation
strictly necessary to satisfy this requirement?

To answer this question, DFSTrace was reimplemented using atoolkit for interposing code between applications and
the UNIX system call interface as part of Jones' Ph.D. thesis?> 23, The toolkit allows the kernel code and agent to
be replaced by an out-of-kernel interposition agent and log merge server. Instances of the toolkit agent run as part
of user programs. Each toolkit agent constructs trace records and sends them to the log merge server, which creates
a single trace for the host and sends it to the collector. Because tracing is performed in user space, the interposition
agent and thelog merge server must synthesize information that isnormally obtained from kernel data structures, such
as the system time, file identifiers, file attributes, and process information. The interposition agents make additional
system calls, such asget t i meof day and get ui d to obtain thisinformation. In addition, since name resolutionis
transparent to user-level processes, the toolkit implementation must traverse the name space explicitly using | st at

to produce name resol ution records.

Thetwoimplementationswere compared along severa dimensi ons, including code sizeand modul arity, implementation
time, and performance using the Andrew benchmark. The two implementations were comparable in code size. The
toolkit implementation was considerably more modular, requiring changes to only 60% as many files as DFSTrace.
The toolkit implementation required no changes to existing kernel files. Implementation time using the toolkit was an
order of magnitudelessthan DFSTrace, primarily because thefinal content of therecords had al ready been determined,
and the latter involved building, debugging, and maintaining kernels.

Performance of the toolkit implementation was an order of magnitude worse than DFSTrace, ranging from 64-138%
slowdown, compared to the 3-7% in the original. Most of the dowdown in the toolkit implementation is attributable
to additional system calls the toolkit agent must make to construct equivalent log records. These results reaffirm our
decision to gather data in the kernel, avoiding the performance penalty of repeated crossings of the system interface
boundary.

8 Applications

DFSTrace has proven to be invaluable for avariety of purposes. Our original goa was to answer questions about the
Codafile system. Since then, DFSTrace has been applied to a number of other areas. In this section, we discuss the
uses of DFSTrace in four areas —in trace-driven simulation, as a diagnostic tool, as an instrument for exploration, and
as the basis of extensions for understanding low-level system behavior.

8.1 Simulation Studies

Trace-driven simulation has been used to evaluate many aspects of computer systems, such as paging and CPU
scheduling agorithms. The virtues of trace-driven simulation, in particular credibility and reproducibility of results,
are well known?4. In this section, we present some of the simulation studies conducted using traces generated by
DFSTrace.

8.1.1 Cache Sizefor Disconnected Operation

The first serious use of DFSTrace was for a simulation of the file cache manager in the Coda file system. One of
the questions that arose during the development of Coda was how large a file cache would be needed to support
disconnected operation for a day?®. An analysis based on traces from five active Coda workstations calculated a
high-water mark of disk usage for thefile cache of approximately 30 MB. Thus a portable computer with a50-60 MB
disk would be adequate for operating disconnected for atwelve hour day. The analysis was later extended to cover a
five-day work week?6. Ten of the most active traces were selected from over 1700 for which on-line summaries were

19

available at the time. The maximum cache space usage for the full week traces was less than 100 MB, and the median
was less than 50 MB.

8.1.2 Log Space Requirementsfor Directory Resolution

Information on long-term file reference behavior was needed during the design of the Coda resolution subsystem??.
Coda supportsreplication, and uses an optimistic replica control strategy that allows updatesin any network partition.
The resolution subsystem is responsible for detecting and classifying partitioned updates to directories, and merging
them if they do not conflict. A log-based strategy to support resolution was being considered, in which each server
would maintain a history of directory updates it performed during a partition. A concern was whether or not the logs
would consume excessive space on the servers. Since alog grows linearly with work done during the partition, any
realistic estimate of log size had to be derived from empirical data. A feasibility study was conducted to determine
average and peak log growth. A total of 44 AFS and Coda volumes were studied in traces from 20 workstations over
a 10 week period. Long-term log growth was only 94 bytes per hour per volume on average, and peak hourly growth
rates were less than 10K B for over 99.5% of the data points. Thus a 20K B log would be sufficient for most hour-long
partitions. This estimate was confirmed by data gathered from the implementation in actua use, which showed that
99% of the logs grew less than 240K B per day?’.

8.1.3 ImprovementsDueto Prefetching

Traces were used to estimate the performanceimprovementspossiblefor TIP28: 29, asystem which exploitsapplication-
supplied hints about future /0O activity to reduce file read latency. Experiments were conducted with severa appli-
cations, including amake of an X windows calculator tool. The make program was augmented with a prefetching
process, which read exactly the files needed. By using traces, perfect accuracy of futurefile access could be achieved
to estimate the maximum performance gain.

8.14 Reintegration Latency

Theunt r ace facility describedin Section 5.4 was used for evaluating reintegrationlatency in Coda. The experiments
replayed traces of the Andrew benchmark and alarge compile. The results of these experiments suggested that typical
one-day disconnectionswould take about one minuteto reintegrate, and typica work-week disconnectionswould take
about five minutes?®.

8.2 DFSTrace as a Diagnostic Tool

In complex system software, performance problems often mask bugs. In this section, we describe how the tracing
system was useful as a diagnostic tool for discovering problemswith systems and software.

8.2.1 Performance Tuning

Tracing of read and write system calls has been useful for profiling the 1/0 activity of RvM3C, a package providing
persistent virtual memory. RVM manages recoverable storage in unstructured segments, which are backed by files or
disk partitions. Tracing helped uncover a serious performance problem in mapping of large segments into memory;
the read buffers being used were too large and were causing the system to thrash. Tracing has aso been useful as a
diagnostic tool for understanding the 1/0O behavior of incremental log truncationin RVM.

20

8.2.2 MobileClient Configuration

Tracing has been used for more mundane tasks, such as determining which programs should be installed on the local
disk of portable machines (as opposed to fetched into a file cache), and discovering problems with tracing clients. If
a client generated large amounts of data (over 50 MB/day) it was almost invariably because something was wrong.
For example, one new client generated over 400 MB of datain a single weekend. An examination of afew of the
traces showed that the machine had a large mail backlog, which the mailer was attempting to rectify with enthusiasm.
The primary user of the machine maintained amailing list, but he had not noticed that some of the addresses were no
longer valid.

8.2.3 Application Debugging

The traces have aso been useful debugging aids. For example, we have discovered severa applications that do not
close dl of thefiles they open. Because of per-process limitson the number of open files, thisbug eventually rendered
the application unusable. In another case, we found a bug causing our file servers to crash because of a piece of code
that depended on the system time to be non-decreasing. Although this seems like a reasonable assumption, the traces
showed otherwise. Another process on the machine, a daemon running the Network Time Protocol32, periodically
adjusts the system time. Occasionally, these adjustments decrease the time.

8.3 DFSTrace asan Exploratory Tool

In designing system software, it isimportant to know which operationsare thecommon ones. Therefore, understanding
user behavior iscritical to designing reliable, high performance systems. In this section, we describe how traces were
useful in providing realistic examples of user behavior for evaluating file systems.

Traces inspired the micromodels used by SynRGen32, a synthetic file reference generator. A micromodel isaprogram
that captures the file reference activity exhibited by an application. For example, a general reference pattern for a C
compiler isreading a .c file, reading some number of .h files, and creating a .o file. One can create a parameterized
micromodel of a C compiler that takes as input the number of .h file referenced, and the names of the .c, .h, and .0
files. By combining micromodels, one can create a synthetic user that can be used as a benchmark for comparing
systems, or as atest program. New releases of the Coda file system are tested in this manner. The quality of the
references generated by SynRGen depends on the accuracy of its micromodels. Using traces allows the modeler to
obtain a respectable degree of realism while gtill retaining the flexibility of a parameterized model. Traces were used
to develop SynRGen micromodels for activitiesin an edit/debug cycle. These models, when compared to the activity
generated by real users, came within 20% of the mean values for most system variables.

8.4 Study of Low-Leve 1/0O Behavior

This section describes extensions to DFSTrace for recording low-level system events. Although this work was not
part of our origina implementation, it demonstrates that DFSTrace isrelatively easy to extend, and is adaptable to the
needs of other researchers.

8.4.1 Unix Buffer Cache Diagnosis

DFSTrace has been used as a diagnostic tool in understanding UNIX 1/0 behavior during the development of TIP.
A key component of UNIX I/O is the kernel buffer cache, which contains copies of recently used disk blocks®.
DFSTrace was extended to record buffer cache activity in additionto filereference data. Thefilereference dataisused
to identify and separate sources of low-level activity (e.g., user vs. system activity). The buffer cache traces contain
records for read hits and misses, read ahead hits and misses, buffer rel eases, and prefetches by TIP.

21

8.4.2 Disk Geometry

Tsao extended DFSTrace to record SCSI disk 1/0 operations for his work in determining disk geometry®*. Because
SCSl exportsalinear block address space, one cannot al ways determine thelocation of adisk block based onitsaddress.
Tsao gathered traces of 1/0O operationsfrom aknownwaorkload, and devel oped atool to analyze timing patternsbetween
operations in the trace of the workload. Based on these patterns, his tool infers a variety of information about the
disk, such as the disk cache size, number of heads, rotational period, number and location of spare sectors, and track
and cylinder skew. This kind of tool is vauable for measurement studies that employ disks because it alows the
performance of adisk to be diagnosed independent of the application and operating system.

8.4.3 Field Reiability Test

The SCSI extensionsto DFSTrace have enabled itsusein atwo-year field reliability test of Seagate disksinan AT& T
6299 disk array®°. Every 1/0 to the disk array controller is recorded as an enqueue and completion event. If a disk
falls, the data will be sent aong with the disk back to the manufacturer. It isimportant that there are no data losses
in this application. The authors hope to achieve thisin two ways. First, only SCSI events are being recorded, and the
records are small (approximately 24 bytes). Second, an additional level of buffering is used at the client, allowing up
to 10 MB to be stored at the client on disk.

8.4.4 |solation

One of the disadvantages of tracesislack of flexibility3. In particular, the effects of multiprogramming are embedded
in traces and are often difficult to remove. One might want to extract the records for a particular process or set of
processes, and use them as if they were the only processes running on a machine. Patterson extended DFSTrace to
record context switches and process times3’. This allows an extraction of atrace, such as the records for a specific
process, to be used as a workload with accurate timing between events.

9 Redated Work

The value of empirical file usage datawas recognized long ago. Data on file references has been collected and used for
many aspects of file system design over the last two decades®®. Broadly, there are two methodologies for collecting
trace data.

Early file reference data was collected statically, by taking one or more snapshots of the file system. The principle
advantage of static collection is that it does not require modifications to the file system or operating system. If the
system softwareis proprietary, this approach may be the only feasible one. Often, data can be obtained using existing
tools such as accounting or backup programs. A disadvantage of static collection isthat there is no way to determine
how many times a file has been accessed between snapshots. The bodies of statically collected data are summarized
in Figure 18(a). Strange's dataisthe only set collected from a distributed environment; earlier data was collected in
timesharing or batch environments. Irlam’s data was obtai ned through an Internet survey in which he supplied a script
that snapshotslocal file systems and gathers statisticson file sizes.

Most recent datais collected dynamically, using continuous monitoring. Numerous bodies of data have been collected
on individual machines under a variety of operating systems. Some collections include snapshots to eliminate edge
effects during analysis. Most of the data, listed in Figure 18(b), was collected from timesharing environments. There
are afew bodies of dynamically collected data from distributed workstation environments; they are listed in Figure
18(c). Hisgen's data was collected at DEC SRC from Firefly®? workstations running Taos, which provides an Ultrix
emulation interface. Baker collected traces only on four Sprite®! file servers, however, she a'so collected two weeks
of summary datafrom clients. In contrast, DFSTrace has enabled collection of much longer term data (two years) ina
distributed environment.

22

Year Collector System Duration Notes References
1993 Irlam 100 ws, 650 fsys survey 38
1992 Strange 6 Sprite fsys, 76-84 sn distributed 9
1 SunOS/NFSfsys
1982 Lawrie 1CDCNOS 233sn 7
1981 Satyanarayanan 1 PDP-10, TOPS-10 1sn 40
1977 Stritter 2 1BM 360, 370, MVS ~13 months of sn 4
1975 Revelle 21BM 360, MV'S 144.sn 4
(a) Static collections
Year Collector System Duration Notes References
1994 Griffioen, 2 SUnOSws 2-4 weeks w 42
Appleton
1992 Miller 1 UNICOS, others 2 years used syslogs 43
1991 Bozman 2CMS analyzed 1 day/user sn, rw 44
Jensen 2 UNICOS, others 3years used syslogs 45
Muller, Pasquale 14.3 BSD Unix 9 75-minute periods rw, other 46
Schilit 1 SunOS 3 traces, 33-86 hours used audit trail 47
1990 Biswas, et. a. 1VMS 9-12 hour periods sn, w 48,49, 50
Korner 14.2BSD Unix not specified 51
Staelin 21BM MVS 1 week, 3 days used SMF 52
1988 Burrows 14.2BSD Unix 3 work days +2 weekssn 53
1986 Floyd 1 4.2 BSD Unix 1 week sn 10,54
Majumdear, Bunt 14.1 BSD Unix 1 month, 1984 n
1985 Ousterhout 34.2 BSD Unix 2-3 days 2
Zhou 14.2 BSD Unix 9 hours rw 5%
1982 Porcar 21BM OS, TSO 9, 13 days used SMF E
(b) Local, dynamic collections
Year Collector System Duration Notes References
1994 Kuenning 1-10 fs, DOS/Unix 7-10 weeks 56
Dahlin, et. al. 1 NFSfs, 237 ws 7 days used net monitor 57
1993 Mummert, ~ 30 Mach ws, over 2 years, ns, some rw
Satyanarayanan Codafs 1991-1993
1992 Blaze 1 NFSfs, many ws 1 week used net monitor 58
1991 Baker, et. al. ~ 40 Spritews, fs 8 24-hour periods +2 weeks summary 1
1990 Hisgen ~ 100 Taosws 4 days, Feb. 1990

(c) Distributed, dynamic collections
This table summarizes sources of file reference data. We use the following abbreviations: sn (snapshot), ws
(workstation), fs (file server), fsys(file system) rw (includesread/write operations), ns(includesnameresolution
operations). Static collections, derived from periodic snapshots, are shownin part (a). Snapshotsaretaken daily.
Part (b) shows dynamically-collected data from single machines, while part (c) shows data from distributed
systems.

Figure 18: Sources of File Reference Data

23

The sets of file system operationsrecorded varied between studies. For example, most studiesdid not record individual
read and write system calls, because the data would be too voluminous. Exceptions are DFSTrace, Bozman, Biswas
et. al., Zhou, and Muller and Pasquale. The latter also recorded other low-level events, as does an extended version of
DFSTrace. Other than DFSTrace, only Burrows recorded name resolution, and that was in one set of data that is no
longer available®2.

We list several sets of datathat were not recorded at the system call interface, but still represent empirical dataon file
usage. Miller's and Jensen’s data from supercomputing environments consists of activity to archival or mass storage
systems, gleaned from existing system logs. Blaze's system, NFSTrace, is one of several packages that monitorsthe
network for NFS traffic, and then generates a plausible series of file system events that would result in the observed
traffic. The resulting trace is an approximation of file system activity. Dahlin, et. a. aso used NFSTrace to collect
their traces.

Figure 18 shows that most file reference data was collected in academic and research environments. Exceptions are
Biswas, et. d., who collected traces from seven different commercia sitesincluding a large newspaper company and
a machine parts distribution company; Bozman, who collected data from an IBM programming center; Staelin, who
collected data from two Amdahl customer sites; Porcar, one of whose data sets was collected from an installation at
Hughes Aircraft; and Kuenning, whose data isthe only set we know of that captures a DOS workload. Unfortunately,
little data from other environmentsis publicly available.

Most of the dynamic studies cited provide few details on the tools used to collect the data. A few used existing
monitoring tools, such as SMF®3, audit trail facilities, system logs, or network monitors. The remainder of the efforts
involved instrumenting the operating system. Thisis afeasible approach particularly in Unix environments because
of the availability of source code.

Performance is an issue in dynamic collection efforts because tracing runs continuoudly. This issue is critical in
long-term collections. Of course, if existing system logs or off-site monitors are used, there is little or no overhead
incurred by gathering the data. Only afraction of the studies report information on performance. Burrowsreported an
increase of CPU utilization of less than 2%, Biswas, €. a. reported less than 1%, and Muller and Pasqual e reported
less than 5%. Appleton estimates the CPU overhead of his package at 2%°%4. A more meaningful expression of tracing
overhead is slowdown. Korner, who used a package by Simonetti®® for her study, reported a 50% system slowdown.
Zhou reported slowdowns of 7.7-10% for I/O intensive programs, and 2—4% for CPU intensive programs. In contrast,
DFSTraceincurred a 3—7% slowdown for afile system intensive benchmark. In practice, the performance degradation
was unnoticesble.

It isimportant to limit local resource use by tracing for severa reasons. First, use of local resources such as disk files
may perturb the data, because the activities of the tracing system are recorded in the trace itself. Second, users may
be unwilling to sacrifice significant amounts of local resources to store the data, especialy in thelong term. Third, in
long-term collectionsit isimpossibleto store al of the datalikely to be generated locally. For these reasons, we chose
to buffer trace datain afixed amount of memory, and ship it to aremote collection site. To our knowledge, none of the
studiescited in Figure 18 except DFSTrace placed limitson local resource use. Only DFSTrace, Muller and Pasquale,
and Griffoen and Appleton® used remote collection sites.

In summary, DFSTrace isthe only tracing system that has enabled long-term collection of detailed file reference trace
data in a distributed workstation environment. Itslow overhead both in terms of performance and local resource use
were critical for successful long-term data collection. Our emphasis on long-term data collection has made DFSTrace
uniquein severa other respects. Versioning of both data and software, and interchangeability of components simplify
thelogisticsof collectingand handlinglong-termdata. Detection and recording of datal osses was necessary because of
limitsonlocal resource use and distribution of the collection mechanism. Both of these constraints were consequences
of the desirefor long-term data.

24

10 Conclusion

DFSTrace is a system that has proven its worth over the last severd years. Its design pays careful attention to
efficiency, extensibility, and the logistics of long-term data collection in a distributed workstation environment. The
need for long-term data from a distributed environment influenced many aspects of the design of DFSTrace. Low
overhead and limits on local resource use are critical in long-term data collection. The separation of data gathering
from interpretation iskey for good performance and extensibility. Practical considerations such as versioning of data
and software and interchangeability of components simplify the logistics of collecting and handling long-term data.

The importance of long-term data cannot be understated. Much of the work mentioned in Section 8 would not have
been possible without data of the detail and length that DFSTrace generates. DFSTrace is the only system that we
know of that provides data that meets these requirements. We are confident that it will continue to be valuable for
future research in data storage systems.

Acknowledgements

We owe special thanksto Jay Kistler for being our first user, aong with all that entails, and for writing the initial
versions of the sessi ons, unt race, and cr epl ay programs. We are grateful to members of the Coda project
for enduring early versions of DFSTrace and using the data in their research, and the many members of the Carnegie
Meéellon School of Computer Science for allowing us to trace their file references. We wish to thank Hugo Patterson
for first extending DFSTrace to record I/O events, and Garth Gibson and his students for encouraging the use of
DFSTrace for 1/0O related studies. Maria Ebling, Kathryn Porsche, and Mirjana Spasojevic were helpful in improving
the presentation of this paper.

25

References

1.

Mary G. Baker, John H. Hartmann, Michael D. Kupfer, Ken W. Shirriff, and John K. Ousterhout. Measurement of aDistributed
File System. In Proceedings of the Thirteenth ACM Symposium on Operating Systems Principles, pages 198-212, October
1991.

John K. Ousterhout, Hervé Da Costa, David Harrison, John A. Kunze, Mike Knupfer, and James G. Thompson. A Trace-
Driven Analysis of the UNIX 4.2 BSD File System. In Proceedings of the Tenth ACM Symposium on Operating Systems
Principles, December 1985.

Juan M. Porcar. File Migration in Distributed Computer Systems. PhD thesis, University of California, Berkeley, July 1982.
Edwin P. Stritter. File Migration. PhD thesis, Stanford University, March 1977.

Alan Jay Smith. Analysis of Long Term File Reference Patterns for Application to File Migration Algorithms. |EEE
Transactions on Software Engineering, 7(4):403-417, July 1981.

Alan Jay Smith. Long Term File Migration: Development and Evaluation of Algorithms. Communications of the ACM,
24(8):521-532, August 1981.

D.H. Lawrie, JM. Randal, and R.R. Barton. Experiments with Automatic File Migration. IEEE Computer, 15(7), July 1982.
M. Satyanarayanan, JamesJ. Kistler, Puneet Kumar, Maria E. Okasaki, Ellen H. Siegel, and David C. Steere. Coda: A Highly

Available File System for a Distributed Workstation Environment. IEEE Transactions on Computers, 39(4), April 1990.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

M. Satyanarayanan. Scalable, Secure, and Highly Available Distributed File Access. |EEE Computer, 23(5), May 1990.

Rick Floyd. Short-Term File Reference Patternsin a UNIX Environment. Technical Report TR 177, Department of Computer
Science, University of Rochester, March 1986.

Shikharesh Majumdar and Richard B. Bunt. Measurement and Analysis of Locality Phasesin File Referencing Behaviour.
In Proceedings of Performance’86 and ACM SIGMETRICS 1986 Joint Conference on Computer Performance Modelling,
Measurement and Evaluation, May 1986.

M. Satyanarayanan, John H. Howard, David A. Nichols, Robert N. Sidebotham, Alfred Z. Spector, and Michael J. West. The
ITC Distributed File System: Principles and Design. In Proceedings of the Tenth ACM Symposium on Operating Systems
Principles, pages 35-50, December 1-4 1985.

Russel Sandberg, David Goldberg, Steve Kleiman, Dan Walsh, and Bob Lyon. Design and | mplementation of the Sun Network
File System. In USENIX Summer Conference Proceedings. USENIX Association, June 1985.

Marshall K. McKusick, William N. Joy, Samuel J. Leffler, and Robert S. Fabry. A FastFile Systemfor Unix. ACM Transactions
on Computer Systems, 2(3):181 — 197, August 1984.

Department of Electrical Engineering Computer Systems Research Group, Computer Science Division and Berkeley Com-
puter Science, University of Californa. Unix Programmer’s Manual Reference Guide. USENIX Association, April 1986.

Mike Accetta, Robert V. Baron, William Bolosky, David B. Golub, Richard F. Rashid, Avadis Tevanian, Jr., and Michael Wayne
Young. Mach: A New Kernel Foundation for UNIX Development. In Proceedings of the Summer 1986 USENIX Conference,
pages 93-113, Atlanta, GA, July 1986.

S. R. Kleiman. Vnodes: An Architecture for Multiple File System Typesin Sun UNIX. In USENIX Summer Conference
Proceedings. USENIX Association, 1986.

Richard A. Floyd and Carla Schlatter Ellis. Directory Reference Patternsin Hierarchical File Systems. |EEE Transactionson
Knowledge and Data Engineering, 1(2), June 1989.

M. Satyanarayanan (editor). RPC2 User Guide and Reference Manual. School of Computer Science, Carnegie Mellon
University, Pittsburgh PA 15213, October 1991.

John H. Howard, Michael L. Kazar, Sherri G. Menees, David A. Nichols, M. Satyanarayanan, Robert N. Sidebotham, and
Michael J. West. Scale and Performancein a Distributed File System. ACM Transactionson Computer Systems, 6(1):51-81,
February 1988.

Puneet Kumar and M. Satyanarayanan. Log-Based Directory Resolution in the Coda File System. In Proceedings of the
Second International Conference on Parallel and Distributed Information Systems, pages 202 — 213, January 1993. Also
available astechnical report CMU-CS-91-164, School of Computer Science, Carnegie Mellon University.

Michael Blair Jones. Transparently Interposing User Code at the System Interface. PhD thesis, Carnegie Mellon University,
September 1992.

Michael B. Jones. Interposition Agents: Transparently Interposing User Code at the System Interface. In Proceedings of the
Fourteenth ACM Symposium on Operating Systems Principles, pages 80-93, 1993.

26

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.
36.

37.
38.

39.

40.

41.
42.

43.

45.

46.

47.

48.

S. W. Sherman and J. C. Browne. Trace Driven Modeling: Review and Overview. In Proceedings of the ACM-S GSIM
Symposium on the Smulation of Computer Systems, pages 201-207, June 1973.

James J. Kistler and M. Satyanarayanan. Disconnected Operation in the Coda File System. ACM Transactions on Computer
Systems, 10(1), February 1992.

James J. Kistler. Disconnected Operation in a Distributed File System. PhD thesis, School of Computer Science, Carnegie
Mellon University, April 1993.

Brian D. Noble and M. Satyanarayanan. An Empirical Study of aHighly Available File System. In Proceedings of the 1994
ACM SIGMETRICS Conference on Measurement and Modeling of Computer Systems, pages 138 — 149, Nashville, TN, May
1994,

R. Hugo Patterson, Garth A. Gibson, and M. Satyanarayanan. A Status Report on Research in Transparent Informed
Prefetching. Operating Systems Review, 27(2), April 1993.

R. Hugo Patterson and Garth A. Gibson. Exposing I/O Concurrency with Informed Prefetching. In Proceedings of the Third
International Conference on Parallel and Distributed Information Systems, September 1994.

M. Satyanarayanan, Henry H. Mashburn, Puneet Kumar, David C. Steere, and James J. Kistler. Lightweight Recoverable
Virtual Memory. ACM Transactions on Computer Systems, 12(1), February 1994.

D.L. Mills. Internet Time Synchronization: The Network Time Protocol. |IEEE Transactions on Communications,
39(10):1482-93, October 1991.

Maria R. Ebling and M. Satyanarayanan. SynRGen: An Extensible File Reference Generator. In Proceedings of the 1994
ACM SIGMETRICS Conference on Measurement and Modeling of Computer Systems, pages 108 — 117, Nashville, TN, May
1994,

Samual J. Leffler, Marshall Kirk McKusick, Michael J. Karels, and John S. Quarterman. The Design and Implementation of
the 4.3BSD UNIX Operating System. Addison-Wesley Publishing Company, Reading, Massachusetts, 1989.

Steven Tsao. Disk Geometry and Performance Characteristic. Data Storage Systems Center, Research for Undergraduate
Students Program, July 1992.

Mark Holland and Rachad Youssef. Personal communication, October 1994.

Raj Jain. The Art of Computer SystemsPerformanceAnalysis: Techniquesfor Experimental Design, Measurement, Smulation,
and Modeling. John Wiley & Sons, Inc., New York, NY, 1991.

R. Hugo Patterson. Personal communication, November 1993.

Gordon Irlam. A Static Analysis of Unix File Systemscirca 1993.
ftp://cs.dartnouth. edu/ pub/file-sizes/ufs93b.tar. gz, October 1993.

Steven Strange. Analysis of Long-Term Unix File Access Patterns for Application to Automatic File Migration Strategies.
Technical Report UCB/CSD 92/700, University of California, Berkeley, Computer Science Division, August 1992.

M. Satyanarayanan. A Study of File Sizes and Functional Lifetimes. In Proceedings of the 8th Symposium on Operating
Systems Principles, pages 96-108, December 1981.

Ron Revelle. An Empirical Study of File Reference Patterns. Technical Report RJ 1557, IBM, April 1975.

Jim Griffioen and Randy Appleton. Reducing File System Latency Using a Predictive Approach. In USENIX Summer
Conference Proceedings, pages 197 — 207. USENIX Association, June 1994.

Ethan L. Miller and Randy H. Katz. An Analysisof File Migration in a Unix Supercomputing Environment. Technical Report
UCBJ/CSD 92/712, University of California, Berkeley, Computer Science Division, November 1992.

G.P. Bozman, H.H. Ghannad, and E.D. Weinberger. A Trace-Driven Study of CM S File References. IBM Journal of Research
and Development, 35(5-6), September—November 1991.

David W. Jensen and Daniel A. Reed. File Archive Activity in a Supercomputer Environment. Technical Report UIUCDCS-
R-91-1672, University of Illinois at Urbana-Champaign, Department of Computer Science, April 1991.

Keith Muller and JosephPasquale. A High Performance Multi-Structured File System Design. In Proceedingsof the Thirteenth
ACM Symposiumon Operating Systems Principles, pages 56-67, October 1991.

Carl D. Tait and Dan Duchamp. Detection and Exploitation of File Working Sets. In Proceedings of the 11th International
Conference on Distributed Computing Systems, pages 2-9, May 1991.

Prabuddha Biswas and K .K. Ramakrishan. File Access Characterization of VAX/VMS Environments. In Proceedings of the
10th International Conference on Distributed Systems, pages 227-234, May 1990.

27

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.
63.

64.
65.

K. K. Ramakrishnan, P. Biswas, and R. Karedla. Analysis of File 1/O Tracesin Commercial Computing Environments. In
Proceedings of the 1992 ACM SIGMETRICS and Performance’92 International Conference on Measurement and Modeling
of Computer Systems, pages 78-90, June 1992.

Prabuddha Biswas, K. K. Ramakrishnan, and Don Towsley. Trace Driven Analysis of Write Caching Policies for Disks. In
Proceedings of the 1993 ACM SIGMETRICS Conference on Measurement and Modeling of Computer Systems, pages 13-23,
June 1993.

Kim Korner. Intelligent Caching for Remote File Service. In Proceedings of the 10th Inter national Conference on Distributed
Systems, pages 220-226, May 1990.

Carl Staelin and Hector GarciaMolina. File System Design Using Large Memories. Technical Report CS-TR-246-90,
Princeton University, Department of Computer Science, February 1990. Appeared in 5th Jerusalem Conferenceon Information
Technology, Jerusalem Israel, Oct 1990.

Michael Burrows. Efficient Data Sharing. PhD thesis, University of Cambridge, December 1988.

Rick Floyd. Directory Reference Patterns in a UNIX Environment. Technical Report TR 179, Department of Computer
Science, University of Rochester, August 1986.

Songnian Zhou, Hervé Da Costa, and Alan Jay Smith. A File System Tracing Package for Berkeley UNIX. In USENIX
Summer Conference Proceedings. USENIX Association, June 1985.

Geoffrey H. Kuenning, Gerald J. Popek, and Peter L. Reiher. An Analysisof Trace Datafor Predictive File Cachingin Mobile
Computing. In USENIX Summer Conference Proceedings. USENIX Association, June 1994.

Michael Dahlin, Clifford Mather, Randol ph Wang, Thomas Anderson, and David Patterson. A Quantitative Analysisof Cache
Policiesfor Scalable Network File Systems. In Proceedingsof the 1994 ACM SIGMETRICS Conference on Measurement and
Modeling of Computer Systems, pages 150 — 160, Nashville, TN, May 1994.

Matt Blaze. NFS Tracing by Passive Network Monitoring. In USENIX Winter Conference Proceedings, pages 333 — 343.
USENIX Association, January 1992.

M. Satyanarayanan. Distributed File Systems, chapter 14, pages 353-383. Distributed Systems. Addison-Wesley, second
edition, 1993.

C. Thacker, L. Stewart, and E. Satterthwaite. Firefly: A Multiprocessor Workstation. IEEE Transactions on Computers,
37(8):909-920, August 1988.

Michael N. Nelson, Brent B. Welch, and John K. Ousterhout. Caching in the Sprite Network File System. ACM Transactions
on Computer Systems, 6(1):134—154, February 1988.

Michael Burrows. Personal communication, July 1989.

IBM. OS/VS2 MV'S System Programming Library: System Management Facilities (SMF). Technical Report GN28-2903,
IBM, May 1978.

Randy Appleton. Personal communication, July 1994.
J.D. Simonetti. A System Call Trace Facility. Technical Report 85/13, State University of New York at Stony Brook, 1985.

28

